Model Following Neuro-Adaptive Control Design for Non-square, Non-affine Nonlinear Systems
نویسندگان
چکیده
Radhakant Padhi , Nishant Unnikrishnan , S. N. Balakrishnan 3 Department of Aerospace Engineering, Indian Institute of Science – Bangalore, India Department of Mechanical and Aerospace Engineering, University of Missouri – Rolla, USA Abstract This paper proposes a new model-following adaptive control design technique for a class of non-affine and nonsquare nonlinear systems using neural networks. An appropriate stabilizing controller is assumed available for a nominal system model. This nominal controller may not be able to guarantee stability/satisfactory performance in the presence of unmodeled dynamics (neglected algebraic terms in the mathematical model) and/or parameter uncertainties present in the system model. In order to ensure stable behavior, an online control adaptation procedure is proposed in this paper. The controller design is carried out in two steps: (i) synthesis of a set of neural networks which capture matched unmodeled (neglected) dynamics or model uncertainties due to parametric variations and (ii) synthesis of a controller that drives the state of the actual plant to that of a desired nominal model. The neural network weight update rule is derived using Lyapunov theory, which guarantees both stability of the error dynamics (in a practical stability sense) and boundedness of the weights of the neural networks. A desirable characteristic of the adaptation procedure presented in this paper is that it is independent of the technique used to design the nominal controller; and hence can be used in conjunction with any known control design technique. Numerical results for two challenging illustrative problems are presented in this paper which demonstrate these features and clearly bring out the potential of the proposed approach.
منابع مشابه
AN OBSERVER-BASED INTELLIGENT DECENTRALIZED VARIABLE STRUCTURE CONTROLLER FOR NONLINEAR NON-CANONICAL NON-AFFINE LARGE SCALE SYSTEMS
In this paper, an observer based fuzzy adaptive controller (FAC) is designed fora class of large scale systems with non-canonical non-affine nonlinear subsystems. It isassumed that functions of the subsystems and the interactions among subsystems areunknown. By constructing a new class of state observer for each follower, the proposedconsensus control method solves the problem of unmeasured sta...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملPassivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007